Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.147
Filtrar
1.
J Hazard Mater ; 470: 134076, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565014

RESUMO

Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.


Assuntos
Antibacterianos , Biodegradação Ambiental , Ciprofloxacina , Aprendizado de Máquina , Redes Neurais de Computação , Poluentes Químicos da Água , Ciprofloxacina/metabolismo , Antibacterianos/metabolismo , Poluentes Químicos da Água/metabolismo , Cinética , Consórcios Microbianos , Bactérias/metabolismo , Bactérias/genética
2.
Sci Total Environ ; 927: 172077, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569955

RESUMO

Human activities affect terrestrial and aquatic habitats leading to changes at both individual and population levels in wild animal species. In this study, we investigated the phenotype and demographics of the Mediterranean pond turtle Mauremys leprosa (Schweigger, 1812) in contrasted environments of Southern France: two peri-urban rivers receiving effluents from wastewater treatment plants (WWTP), and another one without sewage treatment plant. Our findings revealed the presence of pesticides and pharmaceuticals in the three rivers of investigation, the highest diversities and concentrations of pollutants being found in the river subsections impacted by WWTP effluents. Principal component analysis and hierarchical clustering identified three levels of habitat quality, with different pollutant concentrations, thermal conditions, nutrient, and organic matter levels. The highest turtle densities, growth rates, and body sizes were estimated in the most disturbed habitats, suggesting potential adult benefits derived from harsh environmental conditions induced by pollution and eutrophication. Conversely, juveniles were the most abundant in the least polluted habitats, suggesting adverse effects of pollution on juvenile survival or adult reproduction. This study suggests that turtles living in polluted habitats may benefit from enhanced growth and body size, at the expense of reproductive success.


Assuntos
Ecossistema , Monitoramento Ambiental , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/fisiologia , França , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Lagoas
3.
Water Res ; 256: 121598, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38663209

RESUMO

The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.

4.
J Hazard Mater ; 471: 134363, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663291

RESUMO

Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-Al2O3 could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.9%) of brine derived from a two-stage reverse osmosis treatment. Experimental and theoretical calculation results indicate that introducing Mn could increase the active points of catalyst surface, and introducing Ce could optimize d-band electronic structures and promote the electron transport capacity, enhancing HO• bound to the catalyst surface ([HO•]ads) generation. [HO•]ads plays key roles for degrading the intermediates and transfer them into low molecular weight organics, and further decrease COD, molecular weights and number of organics in reverse osmosis concentrate. Under the same reaction conditions, the presence of Mn/γ-Al2O3 catalyst can reduce ΔO3/ΔCOD by at least 37.6% compared to ozonation alone. Furthermore, Mn-Ce/γ-Al2O3 catalytic ozonation can reduce the ΔO3/ΔCOD from 2.6 of Mn/γ-Al2O3 catalytic ozonation to 0.9 in the case of achieving similar COD removal. Catalytic ozonation has the potential to treat reverse osmosis concentrate derived from bio-treated coking wastewater reclamation.

5.
Environ Res ; 252(Pt 2): 118908, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614197

RESUMO

Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.

6.
Chemosphere ; 357: 141944, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614402

RESUMO

Photoelectrocatalysis stands as an exceptionally efficient and sustainable method, significantly addressing both energy scarcity and environmental pollution challenges. Within this realm, quantum dots (QDs) have garnered immense attention for their outstanding catalytic properties. Their unique features-cost-effectiveness, high efficiency, remarkable stability, and exceptional photovoltaic characteristics-set them apart from other tunable semiconductor materials. Heterojunction structures based on quantum dots remarkably boost solar energy conversion efficiency. This review aims to provide a comprehensive overview of the impacts generated by heterojunctions formed using diverse quantum dots and delve into their catalytic applications. Moreover, it sheds light on recent advancements utilizing quantum dots in modifying optoelectronic semiconductor materials for diverse purposes, ranging from hydrogen (H2) generation to carbon and nitrogen reduction, as well as pollutant degradation. Additionally, the paper offers valuable insights into challenges faced by quantum dot applications and outlines promising future prospects.

7.
Water Res X ; 23: 100222, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646065

RESUMO

The use of powdered activated carbon (PAC) is a common process in advanced wastewater treatment to remove micropollutants. Retention and separation of PAC is essential as PAC loaded with micropollutants should not be released into the environment. Determining the activated carbon (AC) residual in the effluent poses a challenge, as there is currently no on-line measurement method. In this study, the correlation between turbidity, measured by scattered light, and absorption at wavelength of 550 nm (Absorption550 nm), measured by transmitted light, was investigated in relation to the AC residue. Linear correlations for turbidity (R2 = 0.95) and Absorption550 nm (R2 = 1.00) to AC concentrations were observed in both laboratory and full-scale experiments in a pilot plant where superfine PAC was added prior to Pile Cloth Media Filtration (PCMF). Decreasing the particle size (d50) while maintaining the same AC concentration leads to increased turbidity: Therefore, a fourfold reduction in d50 results in a 2- to 3-fold increase in turbidity, whereas a 30-fold reduction in d50 leads to a 6-to 8-fold increase. Furthermore, the original wastewater turbidity led to a parallel shift in the linear correlation between turbidity and AC. Coagulant doses of up to 400 mg Me3+/g AC resulted in a 50% reduction in turbidity. However, higher concentrations from 400 to 1,000 mg Me3+/g AC resulted in increased turbidity with only a 30% reduction compared to the initial turbidity. The study also highlights the significance of AC particle size in optical measurements, impacting result accuracy.

8.
Biosensors (Basel) ; 14(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667186

RESUMO

The release of endocrine-disrupting compounds (EDCs) to the environment poses a health hazard to both humans and wildlife. EDCs can activate or inhibit endogenous endocrine functions by binding hormone receptors, leading to potentially adverse effects. Conventional analytical methods can detect EDCs at a high sensitivity and precision, but are blind to the biological activity of the detected compounds. To overcome this limitation, yeast-based bioassays have previously been developed as a pre-screening method, providing an effect-based overview of hormonal-disruptive activity within the sample prior to the application of analytical methods. These yeast biosensors express human endocrine-specific receptors, co-transfected with the relevant response element fused to the specific fluorescent protein reporter gene. We describe several molecular manipulations of the sensor/reporter circuit in a Saccharomyces cerevisiae bioreporter strain that have yielded an enhanced detection of estrogenic-like compounds. Improved responses were displayed both in liquid culture (96-well plate format) as well as in conjunction with sample separation using high-performance thin-layer chromatography (HPTLC). The latter approach allows for an assessment of the biological effect of individual sample components without the need for their chemical identification at the screening stage.


Assuntos
Técnicas Biossensoriais , Estrogênios , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Humanos , Disruptores Endócrinos/análise , Engenharia Genética
9.
Toxics ; 12(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668483

RESUMO

Mosquitofish, Gambusia affinis, are eponymous larval mosquito predators. Their ability to colonize and survive in habitats that are uninhabitable by other potential predators allows them to naturally manage larval mosquito populations in most ground pools they are present in. However, effluent from residential onsite wastewater treatment systems (OWTSs) appears to limit the presence of fish predators. This is especially problematic in Louisiana, where regulations allow the discharge of OWTS effluent into open drainage conveyances. To determine the effect of effluent on the capacity of mosquitofish for biocontrol in contaminated areas, we assessed the body condition metrics of populations from two effluent-exposed sites and two sites not exposed to effluent, determined the lethal effect of effluent-contaminated drainage water on fish, and measured the prey consumption rates in the presence of effluent. Female fish collected from effluent-impacted sites had a reduced somatic body condition and most females examined displayed masculinized anal fins resembling the male gonopodium structure. This trait was not seen in fish collected from the control sites and has not yet been documented in association with OWTSs or in the state of Louisiana. Fish from the control sites survived at effluent-contaminated water levels < 70%, and the prey clearance rates increased with dilution. Onsite wastewater treatment system effluent has significant effects on both the short- and long-term persistence of mosquitofish, their body composition, reproductive health, and larval mosquito consumption. These effects likely release mosquito larvae from suppression and may increase the threat of mosquito-transmitted pathogens in effluent-contaminated locations.

10.
Environ Res ; 252(Pt 2): 118835, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582423

RESUMO

Quorum sensing (QS) is prevalent in activated sludge processes; however, its essential role in the treatment of heavy metal wastewater has rarely been studied. Therefore, in this study, acyl homoserine lactone (AHL)-mediated QS was used to regulate the removal performance, enzyme activity, and microbial community of Cd- and Pb-containing wastewater in a sequencing batch reactor (SBR) over 30 cycles. The results showed that exogenous AHL strengthened the removal of Cd(II) and Pb(II) in their coexistence wastewater during the entire period. The removal of NH4+-N, total phosphorus, and chemical oxygen demand (COD) was also enhanced by the addition of AHL despite the coexistence of Cd(II) and Pb(II). Meanwhile, the protein content of extracellular polymeric substances was elevated and the microbial metabolism and antioxidative response were stimulated by the addition of AHL, which was beneficial for resistance to heavy metal stress and promoted pollutant removal by activated sludge. Microbial sequencing indicated that AHL optimized the microbial community structure, with the abundance of dominant taxa Proteobacteria and Unclassified_f_Enterobacteriaceae increasing by 73.9% and 59.2% maximally, respectively. This study offers valuable insights into the mechanisms underlying Cd(II) and Pb(II) removal as well as microbial community succession under AHL availability in industrial wastewater.

11.
Sci Total Environ ; 928: 172353, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614351

RESUMO

This study addresses the energy-intensive nature of conventional wastewater treatment processes and proposes a solution through the development of a green, low-energy, and multifunctional wastewater treatment technology. The research focuses on a multifunctional self-driven photoelectrocatalytic (PEC) system, exploring its four-in-one applications in eliminating organic pollutants, reducing U(VI), generating electrical energy, and disinfecting pathogenic microorganisms. A TiO2-decorated carbon felt (CF@TiO2) cathode is synthesized to enhance interfacial charge transfer, with TiO2 coating improving surface binding sites (edge TiO and adsorbed -OH) for UO22+ adsorption and reduction. The self-driven PEC system, illuminated solely with simulated sunlight, exhibits remarkable efficiency in removing nearly 100 % of uranium within 0.5 h and simultaneously degrading 99.9 % of sulfamethoxazole (SMX) within 1.5 h, all while generating a maximum power output density (Pmax) of approximately 1065 µW·cm-2. The system demonstrates significant anti-interference properties across a wide pH range and coexisting ions. Moreover, 49.4 % of the fixed uranium on the cathode is reduced into U(IV) species, limiting its migration. The self-driven PEC system also excels in detoxifying various toxic organic compounds, including tetracycline, chlortetracycline, and oxytetracycline, and exhibits exceptional sterilization ability by disinfecting nearly 100 % of Escherichia coli within 0.5 h. This work presents an energy-saving, sustainable, and easily recyclable wastewater purification system with four-in-one capabilities, relying solely on sunlight for operation.

13.
J Hazard Mater ; 471: 134340, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640670

RESUMO

While the effectiveness of Poly-Aluminum Chloride (PAC) coagulation for pollutant removal has been documented across various wastewater scenarios, its specific application in hospital wastewater (HWW) treatment to remove conventional pollutants and hazardous genetic pollutants has not been studied. The research compared three hospital wastewater treatment plants (HWTPs) to address a knowledge gap, including the PAC coagulation-sodium hypochlorite disinfection process (PAC-HWTP), the biological contact oxidation-precipitation-sodium hypochlorite process (BCO-HWTP), and a system using outdated equipment with PAC coagulation (ODE-PAC-HWTP). Effluent compliance with national discharge standards is assessed, with BCO-HWTP meeting standards for direct or indirect discharge into natural aquatic environments. ODE-PAC-HWTP exceeds pretreatment standards for COD and BOD5 concentrations. PAC-HWTP effluent largely adheres to national pretreatment standards, enabling release into municipal sewers for further treatment. Metagenomic analysis reveals that PAC-HWTP exhibits higher removal efficiencies for antibiotic resistance genes, metal resistance genes, mobile genetic elements, and pathogens compared to BCO-HWTP and ODE-PAC-HWTP, achieving average removal rates of 45.13%, 57.54%, 80.61%, and 72.17%, respectively. These results suggests that when discharging treated HWW into municipal sewers for further processing, the use of PAC coagulation process is more feasible and cost-effective compared to BCO technologies. The analysis emphasizes the urgent need to upgrade outdated equipment HWTPs.

14.
J Environ Manage ; 358: 120893, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640761

RESUMO

Herein, we demonstrate the prospects of tackling several environmental problems by transforming a local rice husk residue into an effective adsorbent, which was then applied for the treatment of real landfill leachate (LL). The study focused on establishing (i) the effect of simple washing on morphological aspects, (ii) evaluating target adsorption capacity for total iron (Fe) and nickel (Ni), (iii) determining regeneration and reuse potential of the adsorbent and (iv) complying to the requirements of worldwide legislations for reuse of treated LL wastewater. The adsorbent was prepared by employing a simple yet effective purification process that can be performed in situ. The LL was collected post-membrane treatment, and the characterizations revealed high concentrations of Fe, Ni, and organic matter content. The simple washing affected the crystallinity, resulting in structural alterations of the adsorbents, also increasing the porosity and specific surface. The adsorption process for Ni occurred naturally at pH 6, but adjusting the pH to 3 significantly improved removal efficiency and adsorption capacity for total Fe. The kinetics were accurately described by the pseudo-second-order model, while the Langmuir model provided a better fit for the isotherms. The adsorbent was stable for 5 reuses, and the metals adsorbed were recovered through basic leaching. The removal capacities achieved underscore the remarkable effectiveness of the process, ensuring the treated LL wastewater meets rigorous global environmental legislations for safe use in irrigation. Thus, by employing the compelling methods herein optimized it is possible to refer to the of solving three environmental problems at once.

15.
Sci Total Environ ; 928: 172587, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642766

RESUMO

This study evaluated the impact of incorporating earthworms (Eisenia fetida) on the drained water quality from a sludge treatment reed bed. The experiment encompassed four setups of treatment beds in two replicates: planted with Arundo donax and addition of earthworms, planted without earthworms, unplanted with earthworms, and treatment bed without plants nor earthworms as control. The units were fed every two weeks with mixed sewage sludge, a blend of primary and secondary sludge over 24 cycles. The mixed sewage sludge had mean dry and volatile solid contents of 24.71 g.DS.L-1 (± 13.67) and 19.14 g.VS.L-1 (± 10.29) resulting a sludge loading rate of 43.59 kg.DS.m-2.year-1 (± 14.49). The inclusion of earthworms in the planted unit reduced release masses of total suspended solids, chemical oxygen demand, nitrate and phosphorous by 43, 45, 75 and 45 % compared to the planted unit. Plant biomass production increased by 43 % with the earthworm presence. The removal efficiency of the units improved after a ramp-up phase (after six months feeding) of which the concentration of TSS, COD and Escherichia coli met limits for water reuse while nitrogen components and phosphorous surpassed the limits. The planted unit with earthworms removed 99 and 99 % of TSS and COD, respectively. Overall, water loss namely through evapotranspiration and earthworm hydration need, positively correlated with pollutant concentration, and earthworm-planted unit had 46 % higher water loss compared to control unit.

16.
Water Res ; 256: 121629, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643642

RESUMO

Despite advances in wastewater treatment plant (WWTP) efficiencies, multiple contaminants of concern, such as microplastics, pharmaceuticals, and per- and poly-fluoroalkyl substances (PFAS) remain largely untreated near discharge points and can be highly concentrated before they are fully mixed within the receiving river. Environmental agencies enforce mixing zone permits for the temporary exceedance of water quality parameters beyond targeted control levels under the assumption that contaminants are well-mixed and diluted downstream of mixing lengths, which are typically quantified using empirical equations derived from one-dimensional transport models. Most of these equations were developed in the 1970s and have been assumed to be standard practice since then. However, their development and validation lacked the technological advances required to test them in the field and under changing flow conditions. While new monitoring techniques such as remote sensing and infrared imaging have been employed to visualize mixing lengths and test the validity of empirical equations, those methods cannot be easily repeated due to high costs or flight restrictions. We investigated the application of Lagrangian and Eulerian monitoring approaches to experimentally quantify mixing lengths downstream of a WWTP discharging into the Rio Grande near Albuquerque, New Mexico (USA). Our data spans river to WWTP discharges ranging between 2-22x, thus providing a unique dataset to test long-standing empirical equations in the field. Our results consistently show empirical equations could not describe our experimental mixing lengths. Specifically, while our experimental data revealed "bell-shaped" mixing lengths as a function of increasing river discharges, all empirical equations predicted monotonically increasing mixing lengths. Those mismatches between experimental and empirical mixing lengths are likely due to the existence of threshold processes defining mixing at different flow regimes, i.e., jet diffusion at low flows, the Coanda effect at intermediate flows, and turbulent mixing at higher flows, which are unaccounted for by the one-dimensional empirical formulas. Our results call for a review of the use of empirical mixing lengths in streams and rivers to avoid widespread exposures to emerging contaminants.

17.
Sci Total Environ ; : 172548, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643882

RESUMO

The Brisbane River estuary is an anthropogenically-impacted waterway in southeast Queensland, Australia. The estuary is over 80 km long and flows through an urbanised region. It receives over 500 t per year of total nitrogen (N) from direct point-source discharges in addition to sporadic flood loads of N from an agriculturally impacted upper catchment. Comprehensive water quality monitoring data for the estuary have been collected from at least 2001. This monitoring data includes ambient nutrient concentrations in the estuary, nutrient concentration and volume of the catchment inflows, and nutrient concentration and volume of point source discharges. This long-term data from a range of sources was used to determine temporal and spatial variations in concentrations, forms, stores and loads of N along the estuary for the period 2001 to 2022. Results showed that, during low-flow periods, the store of N in the mid-upper estuary (33-81 km upstream) is significantly determined by point-source discharges to this reach, and therefore the store of N can be modelled. Model parameters are the daily point source loads, a point source load decay factor, and a background constant store. In the lower estuary (0-33 km upstream) N store can be accurately determined based on dilution with seawater, with point sources not having significant influence on total N in the reach. Total N from large flood events was found to largely pass through the estuary without detectable removal processes, delivering catchment derived N directly to coastal waters. This work informs potential application of nutrient offsets in the estuary, guiding where and when offset options will be effective to mitigate the water quality impacts of point-source nutrients.

18.
Environ Pollut ; : 123946, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643932

RESUMO

In recent years, the malodorous gases generated by sewage treatment plants have gradually received widespread attention due to their sensory stimulation and health hazards. The emission concentration, sensory evaluation and health risk assessment of volatile sulfur compounds (VSCs) were all explored in two municipal wastewater treatment plants (WWTPs) with oxidation ditch and anaerobic/oxic treatment process, respectively. The VSCs concentration showed the highest amount in the primary treatment unit in both the two WWTPs (73.3% in Plant A and 93.0% in Plant B), while the H2S took the main role in the composition of VSCs. However, H2S took a larger percentage in Plant A (84.5% ∼ 87.0%) rather than Plant B (61.2% ∼ 83.5%), which may be due to the different operating conditions and sludge properties in different treatment process. Besides, H2S also gained the first rank in the sensory evaluation and health risk assessment, which may cause considerable sensory irritation and health risk to workers and surrounding residents. Furthermore, the influencing factor analyses of VSCs emission showed that the temperature of water and air, ORP of sludge made the greatest effect on VSCs release. This study provides theoretical and data support for the research of VSCs emission control in WWTPs.

19.
Environ Sci Technol ; 58(15): 6793-6803, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574343

RESUMO

Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.


Assuntos
Desinfetantes , Purificação da Água , Desinfecção , Genes Bacterianos , Bactérias/genética , Antibacterianos/farmacologia , Desinfetantes/farmacologia , Plasmídeos/genética
20.
Water Sci Technol ; 89(7): 1741-1756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619900

RESUMO

Wastewater treatment plants (WWTPs) have positive and negative impacts on the environment. Therefore, life cycle impact assessment (LCIA) can provide a more holistic framework for performance evaluation than the conventional approach. This study added water footprint (WF) to LCIA and defined ϕ index for accounting for the damage ratio of carbon footprint (CF) to WF. The application of these innovations was verified by comparing the performance of 26 WWTPs. These facilities are located in four different climates in Iran, serve between 1,900 and 980,000 people, and have treatment units like activated sludge, aerated lagoon, and stabilization pond. Here, grey water footprint (GWF) calculated the ecological impacts through typical pollutants. Blue water footprint (BWF) included the productive impacts of wastewater reuse, and CF estimated CO2 emissions from WWTPs. Results showed that GWF was the leading factor. ϕ was 4-7.5% and the average WF of WWTPs was 0.6 m3/ca, which reduced 84%, to 0.1 m³/ca, through wastewater reuse. Here, wastewater treatment and reuse in larger WWTPs, particularly with activated sludge had lower cumulative impacts. Since this method takes more items than the conventional approach, it is recommended for integrated evaluation of WWTPs, mainly in areas where the water-energy nexus is a paradigm for sustainable development.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Pegada de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...